Course: ECE 25500 - Introduction to Electronic Analysis and Design

Type of Course: Required for CmpE and EE Programs

Catalog Description: Diode, bipolar transistor, and FET circuit models for the design and analysis of electronic circuits. Single and multistage analysis and design; introduction to digital circuits. Computer-aided design calculations, amplifier operating point design, and frequency response of single and multistage amplifiers. High-frequency and low-frequency designs are emphasized.

Credits: 3

Contact Hours: 3

Prerequisite Courses: ECE 20100

Prerequisites by Topics: Basic circuit analysis including Ohm’s and Kirchhoff’s Laws, loop and nodal analysis, Thevenin and Norton equivalents, Sinusoidal forcing functions, phasors, impedance, and admittance

Course Objectives: One objective of this course is to use the material presented in the introductory courses in an engineering sense, i.e., design. The medium used is the analysis and design of electronic systems. A secondary objective is the use of the computer in this process, i.e., when, if, and how the computer should be used to solve an engineering design problem. A third objective is that of introducing specific electronic systems as design examples of a complete engineering problem using systems specifications and typical specification sheets as a starting point.

Course Outcomes: Students who successfully complete this course will have demonstrated:
1. An ability to identify and correctly utilize the external lead structure and basic electrical characteristics of common semiconductor devices (PN junctions, MOSFETs and BJTs). (a, k)
2. An ability to analyze and design DC bias circuits. \((a, c, e, k)\)
3. An ability to utilize DC and AC models of semiconductor devices in both analysis and design. \((a, c, k)\)
4. An ability to analyze and design operation amplifiers. \((a, c, e, k)\)
5. An ability to use a CAD tool (e.g., Multisim) in circuit analysis and design. \((a, c, e, k)\)

Lecture Topics
1. Review of Linear Circuit Theory
2. Diodes, diode models, diode applications
3. MOSFETs, MOSFET circuits, MOS logic
4. Bipolar Junction Transistors, BJT circuits
5. Transistor applications, Multi-stage circuits
6. BJT amplifiers, BJT hybrid-pi model
7. MOSFET amplifiers, MOSFET hybrid-pi model
8. Differential amplifiers
9. Frequency response

Computer Usage
Medium

Laboratory Experience
None

Design Experience
Medium

Coordinator
Elizabeth A. Thompson, Ph.D.

Date
03/02/2018